Two matrices \(\mathbf{A}\) and \(\mathbf{B}\) can be added up, if they have the same number of rows and same number of columns. In that case the resulting matrix \(\mathbf{C} = \mathbf{A}+\mathbf{B}\) is calculated so that the corresponding elements of these matrices are summed separately.
Example of matrix addition
\begin{eqnarray}
\left[\begin{matrix}
1&2&3\\
4&5&6
\end{matrix}
\right]
+
\left[\begin{matrix}
1&-2&0\\
3&-6&7
\end{matrix}
\right]
&=&
\left[
\begin{matrix}
2&0&3\\
7&-1&13
\end{matrix}
\right]
\end{eqnarray}
The rule of summing two matrices applies to any finite number of addend. The following example shows addition of 3 vector-column matrices.
\begin{eqnarray}
\left(\begin{matrix}2\\ 1\\3\end{matrix}\right) + \left(\begin{matrix}1\\ 1 \\ 1\end{matrix}\right) +\left(\begin{matrix}4\\ 0\\ 1\end{matrix}\right) &=& \left(\begin{matrix}7\\ 2\\ 5\end{matrix}\right)
\end{eqnarray}
For matrix addition the law of commutation and association law apply.
\begin{eqnarray}
\mathbf{A} + \mathbf{B} &=& \mathbf{B} + \mathbf{A},\\
\mathbf{A} + (\mathbf{B} + \mathbf{C}) &=& (\mathbf{A}+\mathbf{B})+\mathbf{C}.
\end{eqnarray}
- Home
- Solvers
- Numbers and Algebra
- Functions
- Geometry
- Calculus
- Numerical Methods
- Website Information